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We present a novel technique to solve eddy current problems in thin conductors of arbitrary topology by a geometric formulation
based on a magnetic scalar potential. The formulation is suitable for an arbitrary polyhedral mesh. A general and fast algorithm
is introduced for the topological pre-processing required when the conducting domain is not topologically trivial. Finally, a critical
comparison between surface integral and differential formulations is performed.
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I. INTRODUCTION

THE SOLUTION of eddy current problems in thin con-
ducting structures, such as thin shells (shields), have been

already addressed both with differential formulations [1]-[4]
and surface integral formulations [5]-[7].

This contribution presents for the first time an efficient
geometric formulation, based on the magnetic scalar potential,
suitable for general polyhedral meshes.

As far as we know, there are no general and fast algorithms
in literature to address the topological pre-processing required
when the thin conductor is not topologically trivial. This paper
fills this gap by introducing a fast algorithm which exhibits
linear complexity on average. Finally, a critical comparison
between surface integral and differential formulations is per-
formed. Differential formulations, in fact, lead to a system that
may be solved with standard algebraic multigrid solvers, given
that it contains only scalar unknowns.

II. EDDY CURRENT PROBLEMS IN THIN CONDUCTORS

Let us consider a polyhedral mesh that covers the computa-
tional domain where the eddy current problem has to be solved
(a simply connected subset of the three-dimensional Euclidean
space). The thin conductor is represented in this mesh by the
discrete surface M formed by the union of polygonal faces.

The nodes belonging to the interior of M are doubled in
such a way that a discontinuity of the electric scalar potential
is allowed through the thin layer, see Fig. 1a. Each pair of
nodes on M, such as {ni, nj} in Fig. 1a, possesses the same
coordinates but they are considered as two different elements
of the resulting cell complex K.

The oriented geometrical elements of K are nodes n, edges
e, faces f and volumes v. The topology of K is encoded in the
incidence matrices G between the pairs e and n, C between f
and e and D between v and f . Next, a dual barycentric complex
K̃ is constructed from K by using the standard barycentric
subdivision yielding dual volumes ṽ, dual faces f̃ , dual edges
ẽ and dual nodes ñ which are in a one to one correspondence
(duality) with the geometrical elements n, e, f and v of K,
respectively. Thanks to the duality, the incidence matrices of
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Fig. 1. a) Nodes beloning to the thin layer M are doubled. In the thin
conductor model, the nodes of a pair share exactly the same coordinates. In
this picture the pairs of nodes, as {ni, nj}, are displayed one apart from the
other only for clarity. b) The additional dual face f̃δij , dual to the additional
edge from ni to nj . c) Exploded view of the two dual volumes ṽi, ṽj dual to
the pair of nodes {ni, nj} ∈ M. The two dual volumes have the additional
dual face f̃δij in their boundaries, thus the flux on this face has to be considered
when enforcing the Gauss law.

K̃ are deduced from those of K as: G̃ = DT , C̃ = CT and
D̃ = −GT .

Let us also add to the complex K the edges, faces and
prismatic elements that restitch the complex. Let us call the
resulting complex as Kδ . In particular, we need the incidence
matrix Gδ between the additional edges and the doubled nodes
pairs (as ni and nj) and the incidence matrix Cδ,T between
the additional dual faces and additional dual edges. We note
that the former incidence matrix can be easily found given that
it is the incidence matrix of primal edges and primal nodes of
M before doubling the nodes. These additional edges give rise
to additional dual faces (as f̃δij), see Fig. 1b.

III. THE NOVEL FORMULATION

Let us assume that the thin layer has a small thickness of δ
and its electrical resistivity ρδ and magnetic permeability µδ
are piecewise uniform in each mesh element.

Let us introduce F = GΩ + Ts + Π i for the edges not
inside the shell, whereas Fδ = GδΩ + Tδ for the additional
edges inside the shell. Ω and Tδ are two unknown degrees of
freedom (DoFs) vectors. Π stores in its columns the H1(K)
cohomology generators [9] of the insulating region and i is
the array of unknown independent currents flowing in M



[9]. The full paper will contain the pseudo-code of the novel
algorithm to efficiently obtain such a cohomology basis. Then,
we introduce Ts, such that C Ts = Is, where Is is the known
source current on mesh faces. This can be found in linear time
average complexity by running the Extended Spanning Tree
Technique (ESTT) [8].

Le us introduce the constitutive relationships Φ̃ = Mµ F
and Φ̃δ = Mδ

µ Fδ , where Φ̃ denotes the magnetic flux on
the standard dual faces, Φ̃δ denotes the magnetic flux on
the additional dual faces, as f̃δij in Fig. 1b, and Mδ

µ is a
diagonal matrix whose construction is straightforward and will
be described in detail in the full paper.

The discrete Gauss law GT Φ̃ + GδT Φ̃δ = 0 enforced on
the boundary of all dual volumes (see Fig. 1c), yields

GTMµGΩ + GTMµΠ i + GδT Φ̃δ = −GTMµTs, (1)

where Φ̃δ can be expressed as

Φ̃δ = Mδ
µ (G

δΩ + Tδ). (2)

Equation (1) has to be complemented with the discrete
Faraday’s law CδT Ũδ + iωΦ̃δ = 0 on dual faces in the
interior of the thin conductor, where Ũδ are the electro-motive
forces on the additional dual edges in the boundary of the
additional dual faces. By defining Iδ as the per-unit-length
current on primal additional primal faces insideM, the Ohm’s
constitutive relationship in M is Ũδ = Mδ

ρ Iδ .
Therefore, Faraday’s law can be written as

CδTMδ
ρC

δTδ + iωΦ̃δ = 0. (3)
Then, the final system becomes

KµΩ + GδTMδTδ + GTMµΠ i = −GTMµTs

MδGδΩ + (Kδ
ρ + Mδ)Tδ + Kδ

ρΠ i = 0

ΠTMµGΩ + ΠTKδ
ρT

δ + ΠTKδ
ρΠ i = −ΠTMµTs

(4)

where
Kµ = GTMµG + GδTMδGδ (5)

Kδ
ρ =

1

iω
CδTMδ

ρC
δ (6)

The third equation in (4) are the non-local Faraday’s laws
[9] written on the support of the cohomology generator.

IV. NUMERICAL RESULTS

The proposed approach has been applied to calculate the
currents induced in a torus of infinitesimal thickness subject to
a uniform sinusoidal magnetic field. The numerical domain is
covered by a simplicial mesh consisting of 115189 elements
and 19764 nodes (22202 nodes after cracking), see Fig. 2.
The total number of DoFs is 24641 (22201+ 2438 additional
DoFs due to the thin layers + 2 cohomology generators). The
solution, shown in Fig. 3, is in excellent agreement with the
one obtained with the boundary integral formulation presented
in [7]. The full paper will contain a more extensive and
quantitative comparison between the two methods.
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Fig. 2. Cut-view of the 3-D numerical domain (bounding box: x, y, z =
±10m) covered by 115189 tetrahedra; in red the elements inside the torus.

Fig. 3. Eddy currents induced in a torus (major radius R = 2.0m, minor
radius a = 0.5m) of infinitesimal thickness subject to a uniform sinusoidal
magnetic field (B = 1T , f = 50Hz). The torus is covered by a surface mesh
consisting of 4876 triangles, 7314 edges, 2438 nodes. Red cones: real part of
the current density (a.u.).
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